Linear systems - Final exam - Solutions

Final exam 2022-2023, Tuesday 20 June 2022, 15:00 - 17:00

Problem 1

A simple model of a magnetic levitation system is given as

$$
\begin{equation*}
m \ddot{q}(t)=m g-\frac{1}{2} \frac{L}{(1+q(t))^{2}} u(t)^{2}, \tag{1}
\end{equation*}
$$

with $q(t)$ the position of the levitated mass with mass $m>0$ and $g>0$ the gravitational constant. The input current to the electromagnet that suspends the mass is denoted by $u(t)$ and $L>0$ is a constant.
(a) Write the system (1) in the form of a nonlinear state-space system $\dot{x}=f(x, u)$ by taking $x_{1}(t)=q(t)$ and $x_{2}(t)=\dot{q}(t)$.
(b) Let $\bar{x}=\left[\begin{array}{ll}\bar{q} & 0\end{array}\right]^{\mathrm{T}}$ be the desired equilibrium point for some $\bar{q}>0$. Give the constant input $u(t)=\bar{u}$ with $\bar{u}>0$ that achieves this equilibrium point.
(c) Linearize the state-space system around the equilibrium point given by \bar{x} and \bar{u}.

Answer Problem 1 (a)

To write (1) in nonlinear state-space form, introduce the state

$$
x=\left[\begin{array}{l}
x_{1} \tag{2}\\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
q \\
\dot{q}
\end{array}\right] .
$$

Then, it is immediate that $\dot{x}_{1}=x_{2}$. The dynamics for x_{2} follows from (1), leading to

$$
\dot{x}=\left[\begin{array}{l}
\dot{x}_{1} \tag{3}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
g-\frac{1}{2 m} \frac{L}{\left(1+x_{1}\right)^{2}} u^{2}
\end{array}\right]=f(x, u) .
$$

Answer Problem 1 (b)

Let

$$
\bar{x}=\left[\begin{array}{l}
\bar{x}_{1} \tag{4}\\
\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
\bar{q} \\
0
\end{array}\right]
$$

be the desired equilibrium point for some $\bar{q}>0$. To find the constant input $u(t)=\bar{u}$, the equation

$$
\begin{equation*}
0=f(\bar{x}, \bar{u}) \tag{5}
\end{equation*}
$$

needs to be solved. Using (3), we obtain $0=\bar{x}_{2}$ for the first coordinate, which indeed corresponds to (4). The equation for the second coordinate yields

$$
\begin{equation*}
g=\frac{1}{2 m} \frac{L}{(1+\bar{q})^{2}} \bar{u}^{2} \tag{6}
\end{equation*}
$$

which has the solution (recall that a positive solution $\bar{u}>0$ is sought)

$$
\begin{equation*}
\bar{u}=\sqrt{\frac{2 m g}{L}}(1+\bar{q}) \tag{7}
\end{equation*}
$$

Answer Problem 1 (c)

In order to find the linearized dynamics around the equilibrium point given by \bar{x} and \bar{u}, define the perturbations

$$
\begin{equation*}
\tilde{x}=x-\bar{x}, \quad \tilde{u}=u-\bar{u} \tag{8}
\end{equation*}
$$

Then, the linearized dynamics is given as

$$
\begin{equation*}
\dot{\tilde{x}}(t)=\frac{\partial f}{\partial x}(\bar{x}, \bar{u}) \tilde{x}(t)+\frac{\partial f}{\partial u}(\bar{x}, \bar{u}) \tilde{u}(t), \tag{9}
\end{equation*}
$$

after which it can be concluded from (3) that

$$
\frac{\partial f}{\partial x}(x, u)=\left[\begin{array}{cc}
0 & 1 \tag{10}\\
\frac{L}{m}\left(1+x_{1}\right)^{-3} u^{2} & 0
\end{array}\right]
$$

Evaluation of the result at (\bar{x}, \bar{u}) gives, after substitution of (7),

$$
\frac{\partial f}{\partial x}(\bar{x}, \bar{u})=\left[\begin{array}{cc}
0 & 1 \tag{11}\\
2 g(1+\bar{q})^{-1} & 0
\end{array}\right]
$$

Similarly,

$$
\frac{\partial f}{\partial u}(x, u)=\left[\begin{array}{c}
0 \tag{12}\\
-\frac{1}{m} \frac{L}{\left(1+x_{1}\right)^{2}} u
\end{array}\right]
$$

such that

$$
\frac{\partial f}{\partial u}(\bar{x}, \bar{u})=\left[\begin{array}{cc}
0 & \tag{13}\\
-\sqrt{\frac{2 g L}{m}} & \frac{1}{1+\bar{q}}
\end{array}\right] .
$$

Consider the linear system

$$
\left.\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \quad \text { with } \quad A=\left[\begin{array}{ll}
-1 & 1 \\
-4 & 2
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
3(t)
\end{array}\right], \quad C=[x(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right],
$$

and where $x(t) \in \mathbb{R}^{2}, u(t) \in \mathbb{R}, y(t) \in \mathbb{R}$.
(a) Is the system internally stable?
(b) Give the transfer function for the system.
(c) Verify that the system is controllable.
(d) Find a nonsingular matrix T and real numbers α_{1}, α_{2} such that

$$
T A T^{-1}=\left[\begin{array}{cc}
0 & 1 \\
\alpha_{1} & \alpha_{2}
\end{array}\right], \quad T B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

It is sufficient to give T^{-1}.
(e) Use the matrix T from (d) to design a state feedback controller $u(t)=F x(t)$ such that the resulting closed-loop system satisfies $\sigma(A+B F)=\{-1,-3\}$.

Answer Problem 2 (a)

To determine internal stability, consider the characteristic polynomial of A as

$$
\Delta_{A}(s)=\operatorname{det}(s I-A)=\left|\begin{array}{cc}
s+1 & -1 \tag{14}\\
4 & s-2
\end{array}\right|=(s+1)(s-2)+4=s^{2}-s+2,
$$

and recall that the system is internally stable if and only if the polynomial $\Delta_{A}(s)$ is stable. However, $\Delta_{A}(s)$ is a polynomial of degree two and its coefficients do not all have the same sign. Hence, the system is not internally stable.

Alternatively, we may compute the eigenvalues directly by solving

$$
\begin{equation*}
0=\Delta_{A}(\lambda)=\lambda^{2}-\lambda+2, \tag{15}
\end{equation*}
$$

leading to the eigenvalues

$$
\begin{equation*}
\lambda_{1}=\frac{1+i \sqrt{7}}{2}, \quad \lambda_{2}=\frac{1-i \sqrt{7}}{2} \tag{16}
\end{equation*}
$$

using the quadratic formula. As both have positive real parts, the system is not internally stable.

Answer Problem 2 (b)

Recall that the transfer function $T(s)$ is given by

$$
\begin{equation*}
T(s)=C(s I-A)^{-1} B . \tag{17}
\end{equation*}
$$

Therefore, we first compute

$$
(s I-A)^{-1}=\frac{1}{\Delta_{A}(s)} \operatorname{adj}(s I-A)=\frac{1}{s^{2}-s+2}\left[\begin{array}{cc}
s-2 & 1 \tag{18}\\
-4 & s+1
\end{array}\right]
$$

and subsequently obtain

$$
T(s)=\frac{1}{s^{2}-s+2}\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s-2 & 1 \tag{19}\\
-4 & s+1
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\frac{s+1}{s^{2}-s+2} .
$$

Answer Problem 2 (c)

To verify controllability, compute

$$
\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \tag{20}\\
3 & 2
\end{array}\right]
$$

and note that

$$
\operatorname{rank}\left[\begin{array}{ll}
B & A B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}
1 & 2 \tag{21}\\
3 & 2
\end{array}\right]=2=n
$$

where n is the state-space dimension. Hence, the system is controllable.

Answer Problem 2 (d)

First, recall the characteristic polynomial (14) as

$$
\begin{equation*}
\Delta_{A}(s)=s^{2}-s+2 \tag{22}
\end{equation*}
$$

and define

$$
\begin{equation*}
a_{1}=-1, \quad a_{0}=2 \tag{23}
\end{equation*}
$$

to write

$$
\begin{equation*}
\Delta_{A}(s)=s^{2}+a_{1} s+a_{0} \tag{24}
\end{equation*}
$$

Then, as the pair (A, B) is controllable, there exists a nonsingular matrix T such that

$$
T A T^{-1}=\left[\begin{array}{cc}
0 & 1 \tag{25}\\
-a_{0} & -a_{1}
\end{array}\right], \quad T B=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

which is the controllability canonical form. By comparing this to the matrices in the question, this means that we can choose α_{1} and α_{2} such that

$$
\begin{equation*}
\alpha_{1}=-a_{0}=-2, \quad \alpha_{2}=-a_{1}=1 \tag{26}
\end{equation*}
$$

To find the matrix T that achieves the transformation, define the vector q_{2} as

$$
q_{2}=B=\left[\begin{array}{l}
1 \tag{27}\\
3
\end{array}\right]
$$

and vector q_{2} as

$$
q_{1}=A B+a_{1} B=\left[\begin{array}{l}
2 \tag{28}\\
2
\end{array}\right]+(-1)\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Now, define T through its inverse as

$$
T^{-1}=\left[\begin{array}{ll}
q_{1} & q_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \tag{29}\\
-1 & 3
\end{array}\right]
$$

Using

$$
T=\left[\begin{array}{cc}
1 & 1 \tag{30}\\
-1 & 3
\end{array}\right]^{-1}=\frac{1}{4}\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]
$$

a direct calculation shows that indeed

$$
T A T^{-1}=\left[\begin{array}{cc}
0 & 1 \tag{31}\\
-2 & 1
\end{array}\right], \quad T B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

verifying the desired result.

Answer Problem 2 (e)

As a first step, we define a polynomial $p(s)$ with roots at the desired eigenvalues for $A+B F$. This leads to

$$
\begin{equation*}
p(s)=(s+1)(s+3)=s^{2}+4 s+3 \tag{32}
\end{equation*}
$$

with can be written as

$$
\begin{equation*}
p(s)=s^{2}+p_{1} s+p_{0} \tag{33}
\end{equation*}
$$

with

$$
\begin{equation*}
p_{1}=4, \quad p_{0}=3 \tag{34}
\end{equation*}
$$

Our objective is to find a matrix F such that

$$
\begin{equation*}
\Delta_{A+B F}(s)=p(s) \tag{35}
\end{equation*}
$$

To achieve this, note that

$$
\begin{equation*}
\Delta_{A+B F}(s)=\Delta_{T(A+B F) T^{-1}}(s)=\Delta_{T A T^{-1}+T B F T^{-1}}(s) . \tag{36}
\end{equation*}
$$

Using the matrix T from problem (d), this gives

$$
T A T^{-1}=\left[\begin{array}{cc}
0 & 1 \tag{37}\\
-a_{0} & -a_{1}
\end{array}\right], \quad T B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Next, denote

$$
F T^{-1}=\left[\begin{array}{ll}
f_{0} & f_{1} \tag{38}
\end{array}\right]
$$

such that

$$
T A T^{-1}+T B F T^{-1}=\left[\begin{array}{cc}
0 & 1 \tag{39}\\
f_{0}-a_{0} & f_{1}-a_{1}
\end{array}\right]
$$

As this matrix is in companion form, we can easily obtain its characteristic polynomial as

$$
\begin{equation*}
\Delta_{T A T^{-1}+T B F T^{-1}}(s)=s^{2}+\left(a_{1}-f_{1}\right) s+\left(a_{0}-f_{0}\right) \tag{40}
\end{equation*}
$$

Now, after recalling (36), we see that the objective (35) is achieved if and only if

$$
\begin{equation*}
a_{1}-f_{1}=p_{1}, \quad a_{0}-f_{0}=p_{0} \tag{41}
\end{equation*}
$$

which can readily be solved to obtain

$$
\begin{equation*}
f_{1}=a_{1}-p_{1}=-1-4=-5, \quad f_{0}=a_{0}-p_{0}=2-3=-1 . \tag{42}
\end{equation*}
$$

Finally, solving the linear equation

$$
F T^{-1}=\left[\begin{array}{ll}
f_{0} & f_{1}
\end{array}\right]=\left[\begin{array}{ll}
-1 & -5 \tag{43}
\end{array}\right]
$$

leads to

$$
\begin{equation*}
F=[-2-1] . \tag{44}
\end{equation*}
$$

Show that the matrix pair (A, B) is controllable if and only if the matrix pair $(A+B F, B)$ is controllable for any matrix F.
Hint. Use the Hautus test.

The if part is clear (just take $F=0$), so we focus on the only if. Let the matrix pair (A, B) be controllable. Denote by n the number of rows (and columns) of A, i.e., $A \in \mathbb{R}^{n \times n}$, and let m be such that $B \in \mathbb{R}^{n \times m}$. By the Hautus test, we have that

$$
\begin{equation*}
\operatorname{rank}[A-\lambda I \quad B]=n \tag{45}
\end{equation*}
$$

for all $\lambda \in \sigma(A)$. Note that this is equivalent to requiring (45) for all $\lambda \in \mathbb{C}$, as $\operatorname{rank}(A-\lambda I)=n$ for all $\lambda \notin \sigma(A)$.

We give two possible approaches for finalizing the proof.
Approach 1. Let $F \in \mathbb{R}^{m \times n}$ be arbitrary and note that, for any $\lambda \in \mathbb{C}$,

$$
[A+B F-\lambda I \quad B]=\left[\begin{array}{ll}
A-\lambda I & B
\end{array}\right]\left[\begin{array}{cc}
I & 0 \tag{46}\\
F & I
\end{array}\right]
$$

After observing that the matrix

$$
\left[\begin{array}{cc}
I & 0 \tag{47}\\
F & I
\end{array}\right]
$$

is nonsingular, it follows that

$$
n=\operatorname{rank}\left[\begin{array}{ll}
A-\lambda I & B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}
A-\lambda I & B
\end{array}\right]\left[\begin{array}{ll}
I & 0 \tag{48}\\
F & I
\end{array}\right]=\operatorname{rank}[A+B F-\lambda I B]
$$

for all $\lambda \in \mathbb{C}$, which shows that the matrix pair $(A+B F, B)$ is controllable.
Approach 2. Attempting to establish a contraction, assume that there exists $F \in \mathbb{R}^{n \times m}$ such that the matrix pair $(A+B F, B)$ is not controllable. By the Hautus test, this means that there exists a $\lambda \in \sigma(A+B F)$ such that

$$
\begin{equation*}
\operatorname{rank}[A+B F-\lambda I \quad B]<n \tag{49}
\end{equation*}
$$

Equivalently, there exists $v \in \mathbb{C}^{n}$ with $v \neq 0$ such that

$$
\begin{equation*}
v^{\mathrm{T}}[A+B F-\lambda I \quad B]=0 \tag{50}
\end{equation*}
$$

However, this implies that $v^{\mathrm{T}} B=0$, such that also

$$
\begin{equation*}
v^{\mathrm{T}}[A-\lambda I B]=0 \tag{51}
\end{equation*}
$$

which contradicts (45). Hence, the matrix pair $(A+B F, B)$ is controllable for any F.

Problem 4

Consider a linear system (A, B, C, D) and denote by $y(t ; u)$ the output response for zero initial conditions and $u:[0, \infty) \rightarrow \mathbb{R}^{m}$, i.e.,

$$
y(t ; u)=\int_{0}^{t} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)
$$

Note that this can be written, for any s such that $0 \leq s \leq t$, as

$$
\begin{equation*}
y(t ; u)=\int_{0}^{s} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+\int_{s}^{t} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t) . \tag{52}
\end{equation*}
$$

Let the system be externally stable. Use (52) to prove that, if $u(t)$ is such that $\lim _{t \rightarrow \infty} u(t)=0$, then

$$
\lim _{t \rightarrow \infty} y(t ; u)=0
$$

Hint. Introduce the function $\mu:[0, \infty) \rightarrow \mathbb{R}$ defined as $\mu(t)=\sup \{|u(\tau)|: \tau \geq t\}$, where $|\cdot|$ denotes the Euclidean norm. You may use the fact that μ is decreasing and satisfies $\lim _{t \rightarrow \infty} \mu(t)=0$.

First, note that external stability implies that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|C e^{A t} B\right\| \mathrm{d} t<\infty \tag{53}
\end{equation*}
$$

To show that

$$
\lim _{t \rightarrow \infty} y(t ; u)=0
$$

holds, we consider the Euclidean norm of $y(t ; u)$ and obtain

$$
\begin{align*}
|y(t ; u)| & =\left|\int_{0}^{s} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+\int_{s}^{t} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau+D u(t)\right| \\
& \leq\left|\int_{0}^{s} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau\right|+\left|\int_{s}^{t} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau\right|+|D u(t)|, \tag{54}
\end{align*}
$$

using the triangle inequality. Next, the first term on the right-hand side can be bounded as

$$
\begin{equation*}
\left|\int_{0}^{s} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau\right| \leq \int_{0}^{s}\left|C e^{A(t-\tau)} B u(\tau)\right| \mathrm{d} \tau \leq \int_{0}^{s}\left\|C e^{A(t-\tau)} B\right\||u(\tau)| \mathrm{d} \tau \tag{55}
\end{equation*}
$$

where we have used the definition of the matrix norm $\|\cdot\|$. Note that, for $\tau \geq 0$, we have $|u(\tau)| \leq \mu(0)$ by definition of the function μ, such that

$$
\begin{align*}
\left|\int_{0}^{s} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau\right| \leq \mu(0) \int_{0}^{s}\left\|C e^{A(t-\tau)} B\right\| \mathrm{d} \tau & =\mu(0) \int_{t-s}^{t}\left\|C e^{A r} B\right\| \mathrm{d} r \\
& \leq \mu(0) \int_{t-s}^{\infty}\left\|C e^{A r} B\right\| \mathrm{d} r \tag{56}
\end{align*}
$$

Here, we have used the change of variables $r=t-s$ to obtain the equality. Note that the final expression is well-defined due to (53).

Following a completely analogous reasoning, noting that $|u(\tau)| \leq \mu(s)$ for $\tau \geq s$, we can bound the second term on the right-hand side of (54) as

$$
\begin{equation*}
\left|\int_{s}^{t} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau\right| \leq \mu(s) \int_{0}^{t-s}\left\|C e^{A r} B\right\| \mathrm{d} r \leq \mu(s) \int_{0}^{\infty}\left\|C e^{A r} B\right\| \mathrm{d} r \tag{57}
\end{equation*}
$$

Now, choose $s=\frac{1}{2} t$. Then, from (56) we obtain

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left|\int_{0}^{\frac{t}{2}} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau\right| \leq \lim _{t \rightarrow \infty} \mu(0) \int_{\frac{t}{2}}^{\infty}\left\|C e^{A r} B\right\| \mathrm{d} r=0 \tag{58}
\end{equation*}
$$

whereas (57) leads to

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left|\int_{\frac{t}{2}}^{t} C e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau\right| \leq \lim _{t \rightarrow \infty} \mu\left(\frac{1}{2} t\right) \int_{0}^{\infty}\left\|C e^{A r} B\right\| \mathrm{d} r=0 \tag{59}
\end{equation*}
$$

due to the properties of the function μ and (53).
The use of (58) and (59) in (54) leads to

$$
\begin{equation*}
\lim _{t \rightarrow \infty}|y(t ; u)| \leq 0 \tag{60}
\end{equation*}
$$

where we have also used that $\lim _{t \rightarrow \infty}|D u(t)|=0$. This proves the desired result.
(10 points free)

