
Linear systems – Final exam – Solutions

Final exam 2022–2023, Tuesday 20 June 2022, 15:00 – 17:00

Problem 1 (?? points)

A simple model of a magnetic levitation system is given as

mq̈(t) = mg − 1

2

L

(1 + q(t))2
u(t)2, (1)

with q(t) the position of the levitated mass with mass m > 0 and g > 0 the gravitational constant.
The input current to the electromagnet that suspends the mass is denoted by u(t) and L > 0 is a
constant.

(a) Write the system (1) in the form of a nonlinear state-space system ẋ = f(x, u) by taking
x1(t) = q(t) and x2(t) = q̇(t).

(b) Let x̄ = [ q̄ 0 ]T be the desired equilibrium point for some q̄ > 0. Give the constant input
u(t) = ū with ū > 0 that achieves this equilibrium point.

(c) Linearize the state-space system around the equilibrium point given by x̄ and ū.

Answer Problem 1 (a)

To write (1) in nonlinear state-space form, introduce the state

x =

[
x1

x2

]
=

[
q
q̇

]
. (2)

Then, it is immediate that ẋ1 = x2. The dynamics for x2 follows from (1), leading to

ẋ =

[
ẋ1

ẋ2

]
=

[
x2

g − 1
2m

L
(1+x1)2

u2

]
= f(x, u). (3)

Answer Problem 1 (b)

Let

x̄ =

[
x̄1

x̄2

]
=

[
q̄
0

]
(4)

be the desired equilibrium point for some q̄ > 0. To find the constant input u(t) = ū, the equation

0 = f(x̄, ū) (5)

needs to be solved. Using (3), we obtain 0 = x̄2 for the first coordinate, which indeed corresponds
to (4). The equation for the second coordinate yields

g =
1

2m

L

(1 + q̄)2
ū2, (6)

which has the solution (recall that a positive solution ū > 0 is sought)

ū =

√
2mg

L

(
1 + q̄

)
. (7)

1



Answer Problem 1 (c)

In order to find the linearized dynamics around the equilibrium point given by x̄ and ū, define the
perturbations

x̃ = x− x̄, ũ = u− ū. (8)

Then, the linearized dynamics is given as

˙̃x(t) =
∂f

∂x
(x̄, ū)x̃(t) +

∂f

∂u
(x̄, ū)ũ(t), (9)

after which it can be concluded from (3) that

∂f

∂x
(x, u) =

[
0 1

L
m (1 + x1)

−3u2 0

]
. (10)

Evaluation of the result at (x̄, ū) gives, after substitution of (7),

∂f

∂x
(x̄, ū) =

[
0 1

2g(1 + q̄)−1 0

]
. (11)

Similarly,

∂f

∂u
(x, u) =

[
0

− 1
m

L
(1+x1)2

u

]
(12)

such that

∂f

∂u
(x̄, ū) =

[
0

−
√

2gL
m

1
1+q̄

]
. (13)
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Problem 2 (5 + 5 + 4 + 10 + 8 = 32 points)

Consider the linear system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
, with A =

[
−1 1
−4 2

]
, B =

[
1
3

]
, C =

[
1 0

]
,

and where x(t) ∈ R2, u(t) ∈ R, y(t) ∈ R.

(a) Is the system internally stable?

(b) Give the transfer function for the system.

(c) Verify that the system is controllable.

(d) Find a nonsingular matrix T and real numbers α1, α2 such that

TAT−1 =

[
0 1
α1 α2

]
, TB =

[
0
1

]
.

It is sufficient to give T−1.

(e) Use the matrix T from (d) to design a state feedback controller u(t) = Fx(t) such that the
resulting closed-loop system satisfies σ(A+BF ) = {−1,−3}.

Answer Problem 2 (a)

To determine internal stability, consider the characteristic polynomial of A as

∆A(s) = det(sI −A) =

∣∣∣∣s+ 1 −1
4 s− 2

∣∣∣∣ = (s+ 1)(s− 2) + 4 = s2 − s+ 2, (14)

and recall that the system is internally stable if and only if the polynomial ∆A(s) is stable.
However, ∆A(s) is a polynomial of degree two and its coefficients do not all have the same sign.
Hence, the system is not internally stable.

Alternatively, we may compute the eigenvalues directly by solving

0 = ∆A(λ) = λ2 − λ+ 2, (15)

leading to the eigenvalues

λ1 =
1 + i

√
7

2
, λ2 =

1− i
√
7

2
(16)

using the quadratic formula. As both have positive real parts, the system is not internally stable.

Answer Problem 2 (b)

Recall that the transfer function T (s) is given by

T (s) = C(sI −A)−1B. (17)

Therefore, we first compute

(sI −A)−1 =
1

∆A(s)
adj(sI −A) =

1

s2 − s+ 2

[
s− 2 1
−4 s+ 1

]
(18)

and subsequently obtain

T (s) =
1

s2 − s+ 2

[
1 0

] [s− 2 1
−4 s+ 1

] [
1
3

]
=

s+ 1

s2 − s+ 2
. (19)
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Answer Problem 2 (c)

To verify controllability, compute [
B AB

]
=

[
1 2
3 2

]
(20)

and note that

rank
[
B AB

]
= rank

[
1 2
3 2

]
= 2 = n, (21)

where n is the state-space dimension. Hence, the system is controllable.

Answer Problem 2 (d)

First, recall the characteristic polynomial (14) as

∆A(s) = s2 − s+ 2 (22)

and define

a1 = −1, a0 = 2. (23)

to write

∆A(s) = s2 + a1s+ a0. (24)

Then, as the pair (A,B) is controllable, there exists a nonsingular matrix T such that

TAT−1 =

[
0 1

−a0 −a1

]
, TB =

[
1
0

]
, (25)

which is the controllability canonical form. By comparing this to the matrices in the question,
this means that we can choose α1 and α2 such that

α1 = −a0 = −2, α2 = −a1 = 1. (26)

To find the matrix T that achieves the transformation, define the vector q2 as

q2 = B =

[
1
3

]
(27)

and vector q2 as

q1 = AB + a1B =

[
2
2

]
+ (−1)

[
1
3

]
=

[
1
−1

]
. (28)

Now, define T through its inverse as

T−1 =
[
q1 q2

]
=

[
1 1
−1 3

]
. (29)

Using

T =

[
1 1
−1 3

]−1

=
1

4

[
3 −1
1 1

]
, (30)

a direct calculation shows that indeed

TAT−1 =

[
0 1
−2 1

]
, TB =

[
0
1

]
, (31)

verifying the desired result.
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Answer Problem 2 (e)

As a first step, we define a polynomial p(s) with roots at the desired eigenvalues for A+BF . This
leads to

p(s) = (s+ 1)(s+ 3) = s2 + 4s+ 3, (32)

with can be written as

p(s) = s2 + p1s+ p0 (33)

with

p1 = 4, p0 = 3. (34)

Our objective is to find a matrix F such that

∆A+BF (s) = p(s). (35)

To achieve this, note that

∆A+BF (s) = ∆T (A+BF )T−1(s) = ∆TAT−1+TBFT−1(s). (36)

Using the matrix T from problem (d), this gives

TAT−1 =

[
0 1

−a0 −a1

]
, TB =

[
0
1

]
. (37)

Next, denote

FT−1 =
[
f0 f1

]
, (38)

such that

TAT−1 + TBFT−1 =

[
0 1

f0 − a0 f1 − a1

]
(39)

As this matrix is in companion form, we can easily obtain its characteristic polynomial as

∆TAT−1+TBFT−1(s) = s2 + (a1 − f1)s+ (a0 − f0). (40)

Now, after recalling (36), we see that the objective (35) is achieved if and only if

a1 − f1 = p1, a0 − f0 = p0, (41)

which can readily be solved to obtain

f1 = a1 − p1 = −1− 4 = −5, f0 = a0 − p0 = 2− 3 = −1. (42)

Finally, solving the linear equation

FT−1 =
[
f0 f1

]
=

[
−1 −5

]
, (43)

leads to

F =
[
−2 −1

]
. (44)
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Problem 3 (14 points)

Show that the matrix pair (A,B) is controllable if and only if the matrix pair (A+BF,B) is
controllable for any matrix F .

Hint. Use the Hautus test.

The if part is clear (just take F = 0), so we focus on the only if. Let the matrix pair (A,B)
be controllable. Denote by n the number of rows (and columns) of A, i.e., A ∈ Rn×n, and let m
be such that B ∈ Rn×m. By the Hautus test, we have that

rank
[
A− λI B

]
= n (45)

for all λ ∈ σ(A). Note that this is equivalent to requiring (45) for all λ ∈ C, as rank(A− λI) = n
for all λ ̸∈ σ(A).

We give two possible approaches for finalizing the proof.

Approach 1. Let F ∈ Rm×n be arbitrary and note that, for any λ ∈ C,

[
A+BF − λI B

]
=

[
A− λI B

] [ I 0
F I

]
. (46)

After observing that the matrix [
I 0
F I

]
(47)

is nonsingular, it follows that

n = rank
[
A− λI B

]
= rank

[
A− λI B

] [I 0
F I

]
= rank

[
A+BF − λI B

]
, (48)

for all λ ∈ C, which shows that the matrix pair (A+BF,B) is controllable.

Approach 2. Attempting to establish a contraction, assume that there exists F ∈ Rn×m such
that the matrix pair (A + BF,B) is not controllable. By the Hautus test, this means that there
exists a λ ∈ σ(A+BF ) such that

rank
[
A+BF − λI B

]
< n. (49)

Equivalently, there exists v ∈ Cn with v ̸= 0 such that

vT
[
A+BF − λI B

]
= 0. (50)

However, this implies that vTB = 0, such that also

vT
[
A− λI B

]
= 0, (51)

which contradicts (45). Hence, the matrix pair (A+BF,B) is controllable for any F .
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Problem 4 (20 points)

Consider a linear system (A,B,C,D) and denote by y(t;u) the output response for zero initial
conditions and u : [0,∞) → Rm, i.e.,

y(t;u) =

∫ t

0

CeA(t−τ)Bu(τ) dτ +Du(t).

Note that this can be written, for any s such that 0 ≤ s ≤ t, as

y(t;u) =

∫ s

0

CeA(t−τ)Bu(τ) dτ +

∫ t

s

CeA(t−τ)Bu(τ) dτ +Du(t). (52)

Let the system be externally stable. Use (52) to prove that, if u(t) is such that limt→∞ u(t) = 0,
then

lim
t→∞

y(t;u) = 0.

Hint. Introduce the function µ : [0,∞) → R defined as µ(t) = sup{|u(τ)| : τ ≥ t}, where |·| denotes
the Euclidean norm. You may use the fact that µ is decreasing and satisfies limt→∞ µ(t) = 0.

First, note that external stability implies that∫ ∞

0

∥CeAtB∥ dt < ∞. (53)

To show that

lim
t→∞

y(t;u) = 0,

holds, we consider the Euclidean norm of y(t;u) and obtain

|y(t;u)| =
∣∣∣∣∫ s

0

CeA(t−τ)Bu(τ) dτ +

∫ t

s

CeA(t−τ)Bu(τ) dτ +Du(t)

∣∣∣∣
≤

∣∣∣∣∫ s

0

CeA(t−τ)Bu(τ) dτ

∣∣∣∣+ ∣∣∣∣∫ t

s

CeA(t−τ)Bu(τ) dτ

∣∣∣∣+ ∣∣Du(t)
∣∣, (54)

using the triangle inequality. Next, the first term on the right-hand side can be bounded as∣∣∣∣∫ s

0

CeA(t−τ)Bu(τ) dτ

∣∣∣∣ ≤ ∫ s

0

∣∣CeA(t−τ)Bu(τ)
∣∣ dτ ≤

∫ s

0

∥∥CeA(t−τ)B
∥∥|u(τ)| dτ, (55)

where we have used the definition of the matrix norm ∥ · ∥. Note that, for τ ≥ 0, we have
|u(τ)| ≤ µ(0) by definition of the function µ, such that∣∣∣∣∫ s

0

CeA(t−τ)Bu(τ) dτ

∣∣∣∣ ≤ µ(0)

∫ s

0

∥∥CeA(t−τ)B
∥∥ dτ = µ(0)

∫ t

t−s

∥∥CeArB
∥∥ dr

≤ µ(0)

∫ ∞

t−s

∥∥CeArB
∥∥ dr. (56)

Here, we have used the change of variables r = t − s to obtain the equality. Note that the final
expression is well-defined due to (53).

Following a completely analogous reasoning, noting that |u(τ)| ≤ µ(s) for τ ≥ s, we can bound
the second term on the right-hand side of (54) as∣∣∣∣∫ t

s

CeA(t−τ)Bu(τ) dτ

∣∣∣∣ ≤ µ(s)

∫ t−s

0

∥∥CeArB
∥∥ dr ≤ µ(s)

∫ ∞

0

∥∥CeArB
∥∥ dr (57)
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Now, choose s = 1
2 t. Then, from (56) we obtain

lim
t→∞

∣∣∣∣∣∣
∫ t

2

0

CeA(t−τ)Bu(τ) dτ

∣∣∣∣∣∣ ≤ lim
t→∞

µ(0)

∫ ∞

t
2

∥∥CeArB
∥∥ dr = 0, (58)

whereas (57) leads to

lim
t→∞

∣∣∣∣∣
∫ t

t
2

CeA(t−τ)Bu(τ) dτ

∣∣∣∣∣ ≤ lim
t→∞

µ
(
1
2 t
) ∫ ∞

0

∥∥CeArB
∥∥ dr = 0, (59)

due to the properties of the function µ and (53).
The use of (58) and (59) in (54) leads to

lim
t→∞

|y(t;u)| ≤ 0, (60)

where we have also used that limt→∞ |Du(t)| = 0. This proves the desired result.

(10 points free)
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