Linear systems — Final exam — Solutions

Final exam 2022-2023, Tuesday 20 June 2022, 15:00 — 17:00

Problem 1 (7?7 points)

A simple model of a magnetic levitation system is given as

1 L
mi(t) = mg — - ———u(t)?, (1)
2(1+4q())?

with ¢(t) the position of the levitated mass with mass m > 0 and g > 0 the gravitational constant.
The input current to the electromagnet that suspends the mass is denoted by u(t) and L > 0 is a
constant.

(a) Write the system (1) in the form of a nonlinear state-space system & = f(z,u) by taking
z1(t) = q(t) and z5(t) = 4(t).

(b) Let # = [q 0]T be the desired equilibrium point for some ¢ > 0. Give the constant input
u(t) = @ with @ > 0 that achieves this equilibrium point.

(¢) Linearize the state-space system around the equilibrium point given by Z and .

Answer Problem 1 (a)

To write (1) in nonlinear state-space form, introduce the state

=[] =01 .

Then, it is immediate that #; = 25. The dynamics for x5 follows from (1), leading to

. T T2
o L:j - [9 - 2%(1#1)2“2} = e, )

Answer Problem 1 (b)
Let

o[-

be the desired equilibrium point for some g > 0. To find the constant input u(t) = @, the equation

0=/f(z,u) (5)

needs to be solved. Using (3), we obtain 0 = Z5 for the first coordinate, which indeed corresponds
to (4). The equation for the second coordinate yields

1 L

T o

g

which has the solution (recall that a positive solution @ > 0 is sought)

a:\/Q%(lJrq). (7)



Answer Problem 1 (c)

In order to find the linearized dynamics around the equilibrium point given by Z and «, define the

perturbations
r=x—z, U =u—1u.
Then, the linearized dynamics is given as

i) = @ wan) + L@ wa),

after which it can be concluded from (3) that

of B 0 1
%(Iau) - {ﬁ(1+x1)_3u2 0] .

Evaluation of the result at (z,u) gives, after substitution of (7),

8—f(aé,u) = { 0 1]

Oz 291+~ 0
Similarly,
of [ 0 1
0" [t
such that

(8)



Problem 2 (5+5+4+ 10+ 8 = 32 points)

Consider the linear system
z(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
and where z(t) € R?, u(t) € R, y(t) € R.

, with A[:“], BH, c=[10],

(a) Is the system internally stable?

)
(b) Give the transfer function for the system.
(¢) Verify that the system is controllable.

)

(d) Find a nonsingular matrix 7" and real numbers «;, as such that

TAT—lz[O 1], TB = m
a1 g 1

It is sufficient to give T~ '.

(e) Use the matrix T from (d) to design a state feedback controller u(t) = Fx(t) such that the
resulting closed-loop system satisfies (A + BF') = {—1, —3}.

Answer Problem 2 (a)
To determine internal stability, consider the characteristic polynomial of A as

s+1 —1

As(s) =det(sl — A) = 4 s_9

‘:(s+1)(s—2)+4=32—s+2, (14)

and recall that the system is internally stable if and only if the polynomial A4(s) is stable.
However, A4(s) is a polynomial of degree two and its coefficients do not all have the same sign.
Hence, the system is not internally stable.

Alternatively, we may compute the eigenvalues directly by solving

0=A4N) =X - A+2 (15)
leading to the eigenvalues
1+ 1—1
A (10

using the quadratic formula. As both have positive real parts, the system is not internally stable.

Answer Problem 2 (b)

Recall that the transfer function T'(s) is given by

T(s)=C(sI — A)~'B. (17)

Therefore, we first compute

1 1 s—2 1
— -1 — ] — - @
(sI — A) O adj(sI — A) o [ 4 s 1] (18)
and subsequently obtain
1 s—2 1 1 s+1

T(S)_52_5+2[10}|:_4 5_|_1] [3:|_52_5+2' (19)



Answer Problem 2 (c)

To verify controllability, compute

12
and note that
rank [B AB| = rank 121 2=n (21)
32 ’

where n is the state-space dimension. Hence, the system is controllable.

Answer Problem 2 (d)

First, recall the characteristic polynomial (14) as

A(s) =8> —5+2 (22)
and define
a=-1, ap=2. (23)
to write
Aa(s) = 8% +ays + ao. (24)

Then, as the pair (4, B) is controllable, there exists a nonsingular matrix 7" such that

a_[o 1 [
TAT ! = {_ao _GJ , TB= M : (25)

which is the controllability canonical form. By comparing this to the matrices in the question,
this means that we can choose o and as such that

Q1 = —apg = —2, g = —a1 = 1. (26)

To find the matrix T that achieves the transformation, define the vector ¢o as

1
g2 =B= [3] (27)
and vector g9 as
2 1 1
wamvan= [+ o] <[] -
Now, define T through its inverse as
1 |11
Using
71 -
1 1 113 -1
T‘[—m] _4{1 1|’ (30)
a direct calculation shows that indeed
-1 _ |01 _ [0
TAT " = {2 nE TB = 1) (31)

verifying the desired result.



Answer Problem 2 (e)

As a first step, we define a polynomial p(s) with roots at the desired eigenvalues for A+ BF'. This
leads to

p(s) = (s+1)(s+3) = s> + 45 + 3, (32)
with can be written as
p(s) = s* + p1s + po (33)
with
P =4, po = 3. (34)

Our objective is to find a matrix F such that
Aatpr(s) =p(s). (35)
To achieve this, note that

Aayr(s) = Apassryr-1(8) = Apar—14rprr-1(5). (36)

Using the matrix T from problem (d), this gives

TATl_{ 0 1 } TB_M. (37)
—ag —aq 1
Next, denote
FT7'=[fo f1], (38)
such that
TAT +TBFT ' = |, ° 1 (39)
Jfo—ao f1—a

As this matrix is in companion form, we can easily obtain its characteristic polynomial as
Agar-ryrprr-1(s) = s + (a1 — f1)s + (a0 — fo)- (40)
Now, after recalling (36), we see that the objective (35) is achieved if and only if
ar — f1=p, ao — fo = po, (41)
which can readily be solved to obtain
fi=a1—pr=-1—-4=-5 fo=ao—po=2-3=-1 (42)
Finally, solving the linear equation
FT7'=[fo f1] = [-1 -5], (43)
leads to

F=[-2-1]. (44)



Problem 3 (14 points)

Show that the matrix pair (A, B) is controllable if and only if the matrix pair (A + BF, B) is
controllable for any matrix F'.

Hint. Use the Hautus test.

The if part is clear (just take F' = 0), so we focus on the only if. Let the matrix pair (A, B)
be controllable. Denote by n the number of rows (and columns) of 4, i.e., A € R"*" and let m
be such that B € R™"*™. By the Hautus test, we have that

rank [A — A\ B] =n (45)

for all A € o(A). Note that this is equivalent to requiring (45) for all A € C, as rank(A — AI) =n
for all A € o(A).
We give two possible approaches for finalizing the proof.

Approach 1. Let F' € R™*"™ be arbitrary and note that, for any A € C,

[A+ BF ~ Al B] = [A— I B] [;?] (46)

After observing that the matrix

&

is nonsingular, it follows that

I0

n:rank[A—)J B] :rank[A—)\I B} {F[

] = rank [A+ BF — X\ B, (48)

for all A € C, which shows that the matrix pair (A + BF, B) is controllable.

Approach 2. Attempting to establish a contraction, assume that there exists F' € R™*"™ such
that the matrix pair (A + BF, B) is not controllable. By the Hautus test, this means that there
exists a A € (A + BF) such that

rank [A+ BF — Al B] <n. (49)
Equivalently, there exists v € C™ with v # 0 such that
v" [A+BF -\ B] =0. (50)
However, this implies that vTB = 0, such that also
v" [A— A B] =0, (51)

which contradicts (45). Hence, the matrix pair (A + BF, B) is controllable for any F.



Problem 4 (20 points)

Consider a linear system (A, B, C, D) and denote by y(t; u) the output response for zero initial
conditions and  : [0,00) — R™, i.e.,

t
y(t;u) = / Ce """ Bu(r) dr + Du(t).
0
Note that this can be written, for any s such that 0 < s <, as

s t
y(t;u) = / CeA'=") Bu(r) dr + / CeA'=") Bu(r) dr + Du(t). (52)
0 s

Let the system be externally stable. Use (52) to prove that, if u(t) is such that lim;_, o u(t) = 0,
then

lim y(¢;u) = 0.

t—o0

Hint. Introduce the function y : [0, 00) — R defined as u(t) = sup{|u(7)| : 7 > t}, where |-| denotes
the Euclidean norm. You may use the fact that u is decreasing and satisfies lim; . p(t) = 0.

First, note that external stability implies that
/ [Ce B dt < oo. (53)
0

To show that
Jim ot =0,

holds, we consider the Euclidean norm of y(¢; u) and obtain

ly(t;u)| =

s t

/ Ce*""" Bu(r) dr + / Ce*=7) Bu(r) dTJrDu(t)‘
0 s

< +

/ t Ce*"7) Bu(r) dr| + | Du(t)|, (54)

S

/ CeA=7) Bu(r) dr
0

using the triangle inequality. Next, the first term on the right-hand side can be bounded as

/ Ce A7) Bu(r) dr
0

< / |CeAt) Bu(r)| dr < / lCeAC7 B||[u(r)| dr,  (55)
0 0

where we have used the definition of the matrix norm || - ||. Note that, for 7 > 0, we have
|u(7)] < p(0) by definition of the function p, such that

s t
< 1u(0) /0 |CeAt=) B dr = u(0) /t |CeA B dr

/( Ce=7) Bu(r) dr
0

< u(0) / lce Bl[dr.  (56)
t—s

Here, we have used the change of variables r = t — s to obtain the equality. Note that the final
expression is well-defined due to (53).

Following a completely analogous reasoning, noting that |u(7)| < pu(s) for 7 > s, we can bound
the second term on the right-hand side of (54) as

t t—s 00
[ et Butryarl <uts) [ |leet Bl ar < ) [ floetBlar 67
S 0 0




Now, choose s = 1¢. Then, from (56) we obtain

¢
: 2 L A—7) : A _
tlg(r)lo /0 Ce Bu(r) dr Stliglou(ﬂ) . HC’@ BH dr =0, (58)
whereas (57) leads to
LA TP
: t—7 : 1 T _
tlg& /i CeA=T) Bu(r) dr| < tll>nolo ,u(it)/o |Ce* B| dr =0, (59)
2
due to the properties of the function p and (53).
The use of (58) and (59) in (54) leads to
: )] <
T Jy(t; )] <0, (60)

where we have also used that lim;_, |Du(t)| = 0. This proves the desired result.

(10 points free)



